Japanese companies in South China Delivered to over 300 companies! Bridgestone / Omron Electronics / Ricoh / YKK / Toshiba / Toray / Brother Industries / Pioneer / Fuji Xerox / Seiko / Epson / Olympus / Mandom / Meiji Dairies / Yuasa Battery / Nissin Kogyo / Mitsumi Electric / Takahata Seiko 2 Factory / Sankyo Precision / Fuji Electric / Hosiden / Dongyang Wanghe / Sanyo Group Companies / Nippon Express / JHN Oil / Obara Chemical / Arai Rubber / Yamashita Rubber /Dainichi Kako / Kanematsu Group / Takagi Auto Parts /Sumiden Group Companies / Shikoku Electric Wire / Bando Electric Wire / Nidec / Shibakawa Electronics / Giken Optical / Yamaichi Electronics Tokyo Denko / JO Tech / TOMOS / Aoki Construction / Morito Jitsugyo / Nippon Aleph / Tokyo Pigeon / Nitto Kogyo / OTAX / CAMPLAS / Nishimatsu Construction / Aoki Construction and others # Clean up the Earth! # Circulation treatment method (inside the treatment tank) - 1. Circulation treatment is the best way to treat fuel thoroughly. - 2. A sub-tank is easily modified to serve as a treatment tank. - 3. Heavy oil / diesel in the treatment tank is circulated. - 4. Fuel is circulated 15 times by the equipment and reformed into high-quality fuel. | NE | O-EXERGY Product Sp | ns | NEO-EXERGY High heat resistance (for Type C heavy oil) | | | | | | |--------------|---------------------|--------|--|--------------|-----------------|--------|----------------------|--| | Model number | Usage (per day) | Length | Connection port size | Model number | Usage (per day) | Length | Connection port size | | | NEO-50 | ~1,000ℓ | 400mm | 15mm(1/2") | NEO-HT50 | ~1,000ℓ | 400mm | 15mm(1/2") | | | NEO-100 | 1,000∼2,000ℓ | 620mm | 20mm(3/4") | NEO-HT100 | 1,000∼2,000ℓ | 620mm | 20mm(3/4") | | | NEO-300 | 2,000∼3,000ℓ | 700mm | 20mm(3/4") | NEO-HT300 | 2,000∼3,000ℓ | 700mm | 20mm(3/4") | | We will check the current usage and site conditions and then design and propose the model number and installation method. ### [What to check before design] - ■Type of oil ■Monthly operating days ■Daily fuel usage - ■Monthly fuel consumption ■Fuel price - ■Capacity of main tank and service tank - Presence and size of day tank (small tank) - ■Number of engines, boilers etc. Manufactured and developed by: NANOBEST JAPAN Company Limited Distributed by: Nakusul Japan LLC $https://nanobestjapan.lsv.jp \quad {\tt nanobestjapan.hokkaido@gmail.com}$ Simultaneously reduces both fuel consumption and greenhouse gas emissions. # CO2 Fuel COX reduction SOX EO (VEXERGY Fuel reforming filter device To a higher level of oil quality Boilers, generators, trucks, heavy machinery, ships, combustion furnaces, etc. # Special filter structure improves oil quality to a higher level Our equipment's filter function does more than just filter fuel. It breaks down large non-combustible oil particles that have accumulated in the fuel tank into small particles and burns all the fuel that has escaped into the atmosphere as soot until now. * Circulation pumps may require replacement due to wear and life. Fuel Consumption The refined oil particles bind with oxygen, improving combustion efficiency. Fuel usage fee (diesel) 6% reduction - Black smoke and PM Clumps of oil particles that cannot be completely burned can be used, reducing emissions. - NOx, SOx Less oxygen is left, thus less is expelled. A·B·C heavy oil Diesel Waste oil Diesel fuel consumption in boilers [Hong Kong Government] 13.5% reduction Partner Program introduced in 2009 (Japan) Report on effectiveness of | Cleaner Production Partnership Program Organization: HKPC | | | (T | est period | 1 month | | | |--|--|---|--|--|---|--|--| | Packary Industry. Plastic Products Industry | Solution (2 cot period 2 months | | | | | | | | Aguitation Technology: Fusinaving device technology to increase dissel combustion efficiency Data Sourcia: Cleaner Production Pletrierably Program Demonstration Project (90000031) Reference Nazrber: CR-0027 Paylor Vess 2000 | To increase the officiency of diesel combustion and control the emission of air pollutants. Axiong installed a fault sering device on the factory's faul backet. | | | | | | | | Technology Service Provider: Bright Success Hong Kong Limited (jirting huang@bahk.ret.on) | The fact-saving device | | | | | | | | Overview | 30,000 gazza) isside.
spring drying Since | When the system is st | | | | | | | This document introduces a dismonstration project of discell optimization and energy-soving
technology applied to factory that holizes. Generally, fuel botters fail to fully contrived discell, worting
the fuel's host energy and exacorboting the omission of six pollutions. | are polar, they will be | districted and arrange
using carbon-bydroge | d by the suggestic for
a molecules to aggre | ld when possing the
gets lose coolly, resul | ough these high-
lting in the effort | | | | In this case, Axiong Plastic Hardware Factory in Bassin District, Shorthan (now sedimed to as
Axiong), is a company mainly organish in plastic processing. With the support of the Classor | be tern apart hocases
in diesel, misces der | | | | | | | | Production Pentrarship Program, the festivey installed a lied-noising-device (EXESICY EX-800)
manufactured by Bright Statesson (ling King Linkshi) are the entire of the integrant of the
surfacetion efficiency of direct and adverse the good of energy casting and amount aduction.
After the system was get into service, it is estimated to save (NY 105.000 (doi: USD15.000) per
year, with a polished genine of a feature one grant of the same of the period of a feature one of the featur | Since small-perfule control-lephagan melocules have more quickly fine large-particle carbon-
hydrogen melocules, the structure in earther to enother bensing some only than wood block. Daned
pound strongly the factor of members are made a major to produce complete controls from distinct
has not proved through shile relating lever pollutars and more energy, achieving the good of energy
assign and emmediate relations. | | | | | | | | The results show that the installation of the faul-saving device by Axing to improve boiler | Demonstration Project Overview | | | | | | | | ountrastion efficiency is one-effective. | Access completed the on-site installation of the fael-carring device in Merch 2009. After system | | | | | | | | Technical bosos | terting and correction | reing, it is now operat | ing normally. | | | | | | Dend i new of the most contensión and storage sources. Contentally, whose fixed it used, it is coposed to the dataset perfect for a large large desemble and the dataset and aggragate the medicales in the disord, thereby increasing the viscosity of the dated and relaxing its combination efficiency. An a result, localised in generated that produced, and companies must use many disord be recolled assessed memory. | Results Assung seviral the fact the installation of the to the table below: | | | | | | | | Microorganium in the six accelerate diesel deterioration. After deterioration, diesel produces more | Di Baler Operation | Amount of Hot | Fuel Consumption | Oli Gonsumption | Fuel Saving | | | | black stacks and forms shalps when barned, causing more serious environmental damage. Shalps not | Conditions | Water Supplied (m*) | 0.5 | (m'Line) | (%) | | | | only lowers dured quality but also affects boiler operation, increasing the frequency of boiler Galance | With Exergy EX-800
Without EX-800 | 919 | 608
716 | 0.793 | 11.5 | | | | and addesing bridge graduations of financy. | achieve a weal that so | No. authorising the good-
le supply of clusteristy
fact boolers and backs | of find saving,
varies, if the find up
p generatory), Avinty
rac In addition, after | ing rate includes all
conservatively esti-
ionalling the fiel-sa | I facilities using
mater that it can
ming device, | | | | Fuel saving device EX-800 Installed fiel saving device Pipe layout of fuel saving device | SHEADON. | | | | | | | # An example of annual reduction results | X . | | | | | | |--------------------------|-------------------------|---------------------------|-----|--------|---------------| | Japanese Company (China) | | Allitual luci Neuuclion | | | CO2 reduction | | Heavy oil | Nippon Wire | 1,620KL | 21% | 340 KL | 892 t | | Diesel | Kyowa Plastics | 1,620KL | 15% | 243 KL | 637 t | | Heavy oil | Seimei Aluminium | 1,400KL | 20% | 280 KL | 734 t | | Diesel | Uniden | 1,400KL | 15% | 210 KL | 550 t | | Heavy oil | Takahata Seiko | 1,080KL | 20% | 216 KL | 560 t | | Heavy oil | Dainichi Seiko Chemical | 900KL | 20% | 180 KL | 472 t | Annual fuel consumption CO2 redu **Showa Plastics** Heavy oil 20% Fuji Electronics CO₂ reduction /435 t **OB Industries** Heavy oil 20% CO2 reduction /377 t ## **Bridgestone Golf: Boiler** **Omron Electronics: Generator** 360,000 L→270,000 L CO₂Emissions 944 t →708 t CO2 • fuel consumption 5,400KL→4,590KL CO₂ Emissions **14,164** t → **12,039** t Diesel truck fuel Introduced in 2011 Truck fuel tank 400L Reformed in a 30-ton treatment tank > Annual fuel consumption Average # **Greatly improved** To a higher level of oil quality Sapporo International University (Japan) Comparison of soot measurement results; A heavy oil (boiler) | | Nitrogen oxide concentration | Sulphur oxide concentration | Density | Total heat generation | Sulphur content | |---------------|---------------------------------|---------------------------------|---------|-----------------------|---------------------------------| | Before reform | 120 | 0.30 | 0.8645 | 45200 | 0.40 | | After reform | Decrease rate (110) 8.3% | Decrease rate (0.19) 36% | 0.8539 | 45410 | Decrease rate (0.26) 35% | Generator Testing Fuel consumption to supply 1kWh to an electric water heater | | | | | | | | | | | 1 | | |------------------------|---------|-----|--------|---|------|---------|--------------|-----|---------|--|--------| | Industrial Diesel Fuel | | | uel Fu | Fuel consumption Decrease rate 625ml → 525ml (-16%) | | | n-grade fuel | Eui | - | Tuel consumption Decrease rate 492ml → 456ml (-7.3%) | | | | | | | | | E PA TA | =/3=AU 5=0 | | 20 00 3 | | | | HC | 793 ppm | HC | 423 pp | Unburned Hydrocarbons | -47% | HC | 424 ppm | HC | 314 ppm | Unburned Hydrocarbons | -25.9% | | co | 1.47% | СО | 0.29 | Carbon monoxide (toxic exhaust gas) | -80% | co | | CO | 0.09% | Carbon monoxide
(toxic exhaust gas) | -82% | | COz | 3.39% | CO2 | 3.83 | Complete combustion of CO2 | +13% | co | 4.30% | CO: | 4.51% | Complete combustion of CO2 | +4.9% |